Hours: 3 hrs Marks: 80 Note: 1. Question no. 1 is compulsory. 2. Attempt any three questions out of remaining five questions. **Q.1.[a]** Given two lines of regression lines 6y = 5x + 90, 15x = 8y + 130. [5] Find (i) \bar{x} , \bar{y} (ii) correlation coefficient r [b] Show that $(41|(2^{20}-1))$. [5] [c] A random discrete variable x has the probability density function given 10 3 -1 0.2 P(x)k 0.1 2k 0.1 2k Find (i) k (ii) E(X) (iii) V(X). Show that $G = \{1, -1, i, -i\}$ is a group under usual multiplication of [5] complex number. Q.2.[a] Find gcd (2378, 1769) using Euclidean Algorithm. Also find x and y [6] such that $2378x + 1769y = \gcd(2379, 1769)$. [b] Give an example of a graph which has [6] (i) Eulerian circuit but not a Hamiltonian circuit (ii) Hamiltonian circuit but not an Eulerian circuit (iii) Both Hamiltonian circuit and Eulerian circuit [c] Show that (D_{10}, \leq) is a lattice. Draw its Hasse diagram. [8] 0.3.[a] Derive mgf of Binomial distribution and hence find its mean and variance. [6] [b] It was found that the burning life of electric bulbs of a particular brand [6] was normally distributed with the mean 1200 hrs and the S.D. of 90 hours. Estimate the number of bulbs in a lot of 2500 bulbs having the burning life: (i) more than 1300 hours (ii) between 1050 and 1400 hours. [c] (i) Find inverse of 8⁻¹ (mod 77) using Euler's theorem. [8] (ii) Find the Jacobi's symbol of $\left(\frac{32}{15}\right)$. [14. [a] Calculate the coefficient of correlation between x and y from the [6] following data x 23 27 28 29 30 31 33 35 36 39 y 18 22 23 24 25 26 28 29 30 32 [b] Let G be a group of all permutations of degree 3 on 3 symbols 1, 2 & 3. [6] Let H = {I, (1 2)} be a subgroup of G. find all the distinct left cosets of H in G and hence index of H. Q. P. Code: 37497 [c] (i) The average marks scored by 32 boys is 72 with standard deviation of [8] 8 while that for 36 girls is 70 with standard deviation of 6. Test at 5% LOS whether the boys perform better than the girls. (ii) A random sample of 15 items gives the mean 6.2 and variance 10.24. Can it be regarded as drawn from a normal population with mean 5.4 at 5% LOS? Q.5.[a] Solve $x \equiv 1 \pmod{3}$, $x \equiv 2 \pmod{5}$, $x = 3 \pmod{7}$. [6] [b] Given $L = \{1, 2, 4, 5, 10, 20\}$ with divisibility relation. Verify that (L, \leq) [6] is a distributive but not complimented Lattice. [c] (i) Draw a complete graph of 5 vertices. [8] (ii) Give an example of tree. (sketch the tree). **Q.6.[a]** Show that $111^{333} + 333^{111}$ is divisible by 7. [6] [b] The following table gives the number of accidents in a city during a week [6] Find whether the accidents are uniformly distributed over a week. [c] (i) Write the following permutation as the product of disjoint cycles $f = (1 \ 3 \ 2 \ 5) \ (1 \ 4 \ 5) \ (2 \ 5 \ 1)$. Tue 9 Wed 11 Thu 12 Fri 10 Sat 14 Total 84 [8] Mon 15 Day No. of accidents Sun 13 (ii) Simplify as sum of product (A+B) (A+B') (A+B) (A'+B'). **************** | Sem | -N/INFT / Paper / Subject Code: 41002 / Computer Networks - based. | May -2019 | |------|---|-------------------------| | cice | - based. | | | | [Time: Three Hours] | [Marks:80] | | | Note: | | | | 1) Q.1 is compulsory | | | | 2) Answer any 3 from Q2-Q6 | | | | Q.1. Answer the following (5M each) | | | | a) Consider five source symbols of a discrete memory less source the | eir probabilities as | | | shown. Follow the Huffman's algorithm to find the codewords for | r each message: | | | m1 m2 m3 m4 m5 | | | | 0.4 0.2 0.2 0.1 0.1
b) Compare Bus and Star topology | | | | c) Compare Message Switching and Circuit Switching | | | | d) Compare LAN,MAN,WAN | | | | Q.2. a) Draw and explain the OSI Reference Model. | (10) | | | Q.2. b) Generate the CRC code for a dataword 110010101. The divisor 10 there are errors in the received codeword. | 101. Check whether (10) | | | | (10) | | | | | | | Q.3. a) Explain ALOHA and Slotted ALOHA. | (10) | | | Q.3. b) Compare wired and wireless media. | (10) | | | | 1.00 | | | Q.4. a) Explain the IPV4 header format. | (10) | | | | (10) | | | Q.4. b) Compare TCP and UDP. | (10) | | | | | | | Q.5. a) What is routing? Explain DVR with an example. | (10) | | | Q.5. b) Explain sliding window protocol. | (10) | Q.6. Write short notes on any four: (5M each) - a) Speech Compressionb) DNS - c) Congestion Control - d) TCP Timers - e) WWW Page 1 of 2 ## Paper / Subject Code: 41003 / Operating Systems - Q 5) a) What is paging? How it is different from segmentation? Explain hardware support for paging. (10) - b) What is the critical section problem? What requirement should a solution to critical section problem satisfy? State Peterson's solution and indicate how it satisfies the above requirements. - Q 6) a) Compare the following main memory organization schemes: contiguous memory allocation, pure segmentation, and pure paging with respect to the following issues: - i) External fragmentation ii) Internal fragmentation iii) Ability to share code across processes. (10) - b) Explain the Distributed Processing in Operating Systems. What are the necessary conditions for deadlock? (10) | | (3 Hours) | [Total Marks: 80 | |----------|--|------------------| | - | N.B.: (1) Question No. 1 is compulsory. (2) Solve any three questions out of remaining five. (3) Figures to right indicate full marks. | | | | (4) Assume suitable data where necessary. | | | | Solve any four out of five sub questions. a) Compare Computer Organization and Computer Architecture. b) Explain various pipeline hazards. c) Differentiate between Hardwired and Micro programmed control unit. d) Discuss various characteristics of memory. | [04 x 05=20] | | | e) Explain following instructions of 8086 microprocessor -ADC, DAA, N | MOVSB, LÈA, ROL | | | a) Discuss various addressing modes of 8086 microprocessor with examp b) Using Booth's algorithm demonstrates multiplication of (-7)*(-6) | | | | 3. a) Explain concept of DMA in detail. | 10 | | | b) Describe various cache memory mapping techniques. | 10 | | | 4. a) Describe Flynn's classification in detail. | 10 | | | b) Divide 13 by 4 using restoring division algorithms. | 10 | | | a) Describe Minimum modes of 8086 microprocessor in detail. b) Express (-10.100)₁₀ in IEEE 754 single & double precision standard of | 10 | | | point number representation. | 10 | | | 6 Write short notes on: (any four) a) Segmentation concept of 8086 microprocessor. b) Cache coherency c) Von Neumann architecture d) Programmed I/O e) Six stage instruction pipeline | [04 x 05=20] | | C | 900 JUNE 18 18 18 18 18 18 18 18 18 18 18 18 18 | | (3 Hours) - 1. Question No. 1 is compulsory. - 2. Out of remaining questions, attempt any three questions. - 3. Assume suitable data wherever required but justify the same. - 4. All questions carry equal marks. - 5. Answer to each new question to be started on a fresh page. - 6. Figure to the right in brackets indicate full marks. - 1. Solve any four from the followings. - (a) Construct Moore machine equivalent to following Mealy machine. [05] (b) Construct a PDA for the following Context Free Grammar (CFG). [05] $S \rightarrow CBAA$ $A \rightarrow 0A0 \mid 0$ $B \rightarrow 0B \mid 0$ $C \rightarrow 0C1 \mid 1C0 \mid \epsilon$ [Total Marks: 80] - (c) Construct right linear grammar and left linear grammar for the regular expression 1(01)*0(0+1)*. - (d) Explain the concepts, acceptance by final state and acceptance by empty stack of a [05] Pushdown automata with suitable example. - (e) Construct regular expression for the following FA using state elimination method. [05] 2. (a) Write down the regular expressions for the following language. - L is the language of all strings over {0, 1} having odd number of 0's and any number of 1's. - L is the language of all strings over {0, 1} having number of 1's multiple of three. - (b) Construct DFA for the following NFA with &-moves. [10] (c) Construct NFA with ε -moves for the regular expression $ab^*(a + b)^* + ba^*$ [06] 69734 ## Paper / Subject Code: 41005 / Automata Theory $B \rightarrow bB | b | \epsilon$ 3. (a) Covert the following context free grammar into Chomsky normal form. C -> cC | c | B (b) Construct a Context Free Grammar (CFG) for the following PDA. $A \rightarrow aA \mid a \mid B$ [10] [10] $M = (\{q_0, q_1\}, \{(,), [,]\}, \{(, [, Z_0\}, \delta, q_0, Z_0, \Phi) \text{ and } \delta \text{ is given by:}$ $$\delta(q_0, (Z_0) = (q_0, (Z_0))$$ $S \rightarrow A \mid C$ $$\delta(q_0, [, Z_0) = (q_0, [Z_0)$$ $$\delta(q_0, (, () = (q_0, (()$$ $$\delta(q_0, [, [) = (q_0, [[)$$ $$\delta(q_0, (, [) = (q_0, ([)$$ $$\delta(q_0, [, () = (q_0, [()$$ $$\delta(q_0, [, () = (q_0, [())$$ $$\delta(q_0,), () = (q_0, \epsilon)$$ $\delta(q_0,], [) = (q_0, \epsilon)$ $$\delta(q_0, \varepsilon, Z_0) = (q_1, \varepsilon)$$ 4. (a) Construct a PDA for $L = \{a^nbc^m \mid n, m \ge 1 \text{ and } n \le m\}$. [10] - (b) Design a DFA over {0, 1} which accepts all strings that contain substring '11' and do not contain the substring '00'. [06] - (c) Give context free grammar for the following languages. [04] i. $$L = \{0^n 1^m 0^k \mid m > n + k \text{ and } n, m, k \ge 0\}$$ - $L = \{a^{2n}b^{3m}c^{m}d^{n} \mid n, m \ge 1\}$ - 5. (a) Construct Turing Machine to accept language $L = \{a^n b^{2n+1} \mid n \ge 1\}$. [10] (b) Find the equivalent NFA with e-moves accepting the regular language defined by the following grammar. [05] $$S \rightarrow 01S \mid 0A$$ $$A \rightarrow 10 \mid 1B \mid 00A$$ $B \rightarrow 1S \mid 1B \mid \varepsilon$ (c) Let G be the grammar having following set of production. [05] $$S \rightarrow ABA$$ $B \rightarrow bbb$ For the string "ababbbba", find a leftmost derivation and rightmost derivation. 6. (a) Minimize the following DFA $M = (\{q_0, q_1, q_2, q_3, q_4, q_5\}, \{0, 1\}, \delta, q_0, \{q_3, q_5\})$, where δ is given in the following table. [06] | | D- 05 55 | DEED IN | | 42/2 | | 200 | |-----|-------------------|----------------|----------------|----------------|----------------|----------------| | 100 | $\rightarrow q_0$ | qı | q ₂ | *q3 | q ₄ | *q5 | | 0 | gi | q ₃ | q ₅ | q ₃ | q ₅ | q ₃ | | 1 | q ₂ | q ₄ | qı | q ₄ | qı | q 4 | - (b) Construct Turing Machine wherein given an input 1ⁿ leaves 1³ⁿ⁺¹ on the tape. Covert the TM design into equivalent function. [10] - (c) What do you understand by closure property? State the various set theoretic operations under which regular languages are closed. Give suitable example.